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The etiology of pathological eating in anorexia nervosa (AN) remains poorly understood. 
Cerebral blood flow (CBF) is an indirect marker of neuronal function. In healthy adults, 
fasting increases CBF, reflecting increased delivery of oxygen and glucose to support 
brain metabolism. This study investigated whether women remitted from restricting-type 
AN (RAN) have altered CBF in response to hunger that may indicate homeostatic dysreg-
ulation contributing to their ability to restrict food. We compared resting CBF measured 
with pulsed arterial spin labeling in 21 RAN and 16 healthy comparison women (CW) 
when hungry (after a 16-h fast) and after a meal. Only remitted subjects were examined 
to avoid the confounding effects of malnutrition on brain function. Compared to CW, 
RAN demonstrated a reduced difference in the Hungry − Fed CBF contrast in the right 
ventral striatum, right subgenual anterior cingulate cortex (pcorr < 0.05) and left posterior 
insula (punc < 0.05); RAN had decreased CBF when hungry versus fed, whereas CW had 
increased CBF when hungry versus fed. Moreover, decreased CBF when hungry in the 
left insula was associated with greater hunger ratings on the fasted day for RAN. This 
represents the first study to show that women remitted from AN have aberrant resting 
neurovascular function in homeostatic neural circuitry in response to hunger. Regions 
involved in homeostatic regulation showed group differences in the Hungry − Fed con-
trast, suggesting altered cellular energy metabolism in this circuitry that may reduce 
motivation to eat.

Keywords: anorexia nervosa, hunger, cerebral blood flow, homeostatic regulation, energy metabolism, arterial 
spin labeling

inTrODUcTiOn

The motivation to eat in humans is a complex process influenced by intrinsic mechanisms relating 
to hunger and satiety, and extrinsic mechanisms based on the appetitive incentive value of food 
(1). Eating disorders defy homeostatic drives, suggesting that pathological eating may result from a 
disruption in these mechanisms. Anorexia nervosa (AN) is characterized by severe food restriction 
leading to significantly low body weight along with an intense fear of gaining weight and a distorted 
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body image (2). The etiology of pathological eating in AN remains 
poorly understood, though recent research has implicated neural 
substrates underlying altered reward processing (3–5), cognitive 
control (6–8), and interoception (9, 10).

Appetite regulation involves the integration of multiple 
physiological signals regulating energy balance with cognitive 
processes supporting motivation and reward. Homeostatic and 
hedonic brain regions, including the hypothalamus, amygdala, 
striatum, orbitofrontal cortex, insula, and anterior cingulate 
cortex (ACC), are tightly interconnected and form a network 
that controls feeding behavior (1, 11, 12). The hypothalamus, 
a homeostatic center, regulates metabolic processes, including 
hunger and food intake, with motivation-reward systems associ-
ated with the hedonic drive to eat (1, 11). The insula, a key area 
in the neural control of intrinsic homeostatic processes, serves 
as the primary gustatory and interoceptive region in the human 
cortex (13). The striatum is involved in anticipation and detection 
of reward (14). It is activated in response to hunger (1) and less 
so in response to satiety (15–17), suggesting that one of its roles, 
along with areas such as the insula, is to motivate eating (17). 
The ventromedial prefrontal cortex (vmPFC), which includes 
the subgenual cingulate (sgACC; Brodmann area 25) and rostral 
ACC, acts as a visceromotor area (18–20) and governs the hypo-
thalamus, amygdala, and insula. Together in a coordinated effort, 
these brain regions interpret the metabolic state of an individual 
and regulate appetite, motivation, and reward processing (11).

Cerebral blood flow (CBF) is tightly coupled with brain 
metabolism underlying cognition by increasing local delivery 
of oxygen and glucose to support neural function and remove 
metabolic by-products (21). This hemodynamic neurovascular 
coupling ensures a strong increase of CBF and neuronal glucose 
uptake with enhanced neural activity (22). Thus, CBF is an 
indirect marker of neuronal function and is most commonly 
measured with positron emission tomography (PET) 15O-labeled 
water, single-photon emission tomography (SPECT), and more 
recently, arterial spin labeling (ASL) functional magnetic reso-
nance imaging (fMRI). Hunger and food intake are associated 
with localized changes in CBF. In healthy adults, PET 15O-labeled 
water studies reveal hunger increases CBF in homeostatic and 
gustatory brain regions including the hypothalamus, insula, stria-
tum, ACC, amygdala, limbic/paralimbic regions (orbitofrontal 
cortex, parahippocampal gyrus, and hippocampus), thalamus, 
precuneus, and cerebellum (1, 12). Food intake, in contrast, pro-
duces significant decreases in CBF in several regions including the 
thalamus, insula, parahippocampal gyrus, temporal cortex, and 
cerebellum (11, 15, 23) and increases CBF in the prefrontal cortex 
(1, 12, 15, 16), which is thought to reflect inhibitory effects on the 
hypothalamus to promote the termination of a meal. Alterations 
in this pattern of increased neural function when hungry and 
generally decreased neural function when satiated may contrib-
ute to aberrant food intake regulation in eating disorders.

Recent evidence suggests homeostatic influences on reward 
processing may be altered in AN, which may contribute to disor-
dered eating. Hunger and satiety have powerful effects on reward 
and inhibitory processes. Hunger makes rewards more enticing, 
and satiety increases self-control in healthy adults (24). Imaging 
studies report an altered role of striatal processes in the reward 

modulation of hunger or eating in AN, although the mechanisms 
remain to be fully elucidated (3, 4). Decreased sensitivity to the 
motivational drive of hunger may explain the ability of individu-
als with AN to restrict food when emaciated and may implicate 
dysfunction of the homeostatic control system in AN.

The majority of studies examining cerebral perfusion in 
ill AN compared to controls report hypoperfusion at rest in 
regions of the gustatory/homeostatic circuit (25–28). Findings 
in recovered AN are more discrepant, with one SPECT study 
reporting hypoperfusion in restricting-type AN (RAN) (29), and 
other ASL studies of weight-restored (30) and remitted AN (31) 
reporting no regional differences in CBF. The heterogeneity in 
methods used to quantify CBF may contribute to these discrep-
ant findings, with higher perfusion reported in ASL than SPECT 
(32, 33) images. Few studies have controlled for hunger/satiety 
when measuring brain metabolism in AN; thus, the influence of 
homeostatic signaling on CBF in AN remains poorly understood 
(26, 34).

The purpose of this study was to determine whether women 
with a prior history of AN have a diminished CBF response when 
hungry, suggesting that altered homeostatic regulation might 
contribute to reduced motivation to eat in AN. This study used 
pulsed ASL fMRI and a region of interest analysis to investigate 
differential CBF response at rest in healthy comparison women 
(CW) and RAN when hungry (after a 16-h fast) and after a meal. 
We examined remitted subjects to avoid the confounding effects 
of malnutrition on neural function. We hypothesized that RAN 
would show less difference in CBF between hungry and fed states 
than CW in homeostatic and hedonic brain regions support-
ing feeding behavior. A better understanding of physiological 
changes in AN in response to hunger and satiety could provide a 
brain-specific marker relevant to treatment and outcome.

MaTerials anD MeThODs

Participants
Twenty-one RAN women (13 pure restricting subtype, 8 who 
also endorsed purging) were compared (Table 1) to 16 age- and 
weight-matched healthy CW. Remittance was defined (35) as 
maintaining a weight above 85% of average body weight, regular 
menstrual cycles, and no binge eating, purging, or restrictive 
eating patterns for at least 1 year prior to the study. Current and 
lifetime (Table S1 in Supplementary Material) comorbid DSM-IV 
Axis I disorders were assessed using either the Structured Clinical 
Interview for DSM-IV Axis I disorders [SCID-I (36): 8 RAN, 
8 CW] or the Mini International Neuropsychiatric interview 
[M.I.N.I. (37): 13 RAN, 8 CW]. Eating disorder diagnosis was 
established using Module H of the SCID. The M.I.N.I. has been 
validated against the full Structured Clinical Interview for DSM 
diagnoses (SCID-P) and is a more time-efficient alternative to 
the SCID-P (37). No participants had a current DSM-IV Axis I 
diagnosis or took psychotropic medication within 3 months prior 
to the study; a history of alcohol or drug abuse or dependence 
3  months prior to study; medical or neurological concerns; or 
conditions contraindicative to MRI. The study and the protocol 
were reviewed and approved by the Institutional Review Board of 
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TaBle 1 | Participant demographics and characteristics.

cW (n = 16) ran (n = 21) t or χ2 p cohen’s d

Mean ± seM [min–max] Mean ± seM [min–max]

scanner
GE Signa Excite 7 12 χ2(2) = 0.65 0.52
GE MR750 9 9

characteristics
Age 23.9 ± 1.5 [20.0–44.0] 27.2 ± 1.7 [19.0–45.0] t(35) = 1.40 0.17 0.48
Current BMI 22.4 ± 0.4 [20.0–26.0] 21.8 ± 0.3 [19.0–24.0] t(35) = 1.10 0.28 0.36
Lowest BMI 20.5 ± 0.4 [16.8–23.4] 14.9 ± 0.3 [11.3–16.9] t(35) = 10.87 <0.001 3.66
Estradiol (pg/mL)a 50.4 ± 16.0 [9.0–221.0] 40.1 ± 11.0 [5.0–187.0] t(29) = 0.55 0.59 0.76

neuropsychiatric assessments
Beck Depression Inventory 0.4 ± 0.1 [0.0–1.0] 2.4 ± 0.6 [0.0–9.0] t(35) = 3.23 0.004 1.22
STAI state anxiety 25.4 ± 0.9 [20.0–30.0] 29.6 ± 1.8 [20.0–46.0] t(35) = 2.04 0.05 0.69
STAI trait anxiety 24.8 ± 1.0 [20.0–34.0] 29.6 ± 1.3 [21.0–42.0] t(35) = 2.83 0.008 0.98
TCI harm avoidanceb 7.6 ± 0.9 [1.0–16.0] 11.3 ± 1.3 [2.0–23.0] t(34) = 2.17 0.04 0.76
TCI reward dependenceb 17.1 ± 1.0 [9.0–24.0] 19.3 ± 0.6 [12.0–23.0] t(34) = 1.95 0.06 0.65

Entries are of the form mean ± SEM [min–max]. Statistical comparisons were either by means of Welsh t-tests or χ2 test for equality of proportions.
BMI, body mass index; CW, healthy comparison women; RAN, women remitted from anorexia nervosa; STAI, Spielberger State-Trait Anxiety Inventory; TCI, Temperament and 
Character Inventory.
aMeasured on the day of the first scan to confirm menstrual status; three CW and four RAN did not complete this assessment.
bOne CW did not complete this assessment.
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the University of California San Diego. All research participants 
provided written informed consent.

assessments
Current symptoms were assessed using the State-Trait Anxiety 
Inventory (37–39), the Temperament and Character Inventory 
(37, 39), the Beck Depression Inventory (40, 41), and the Eating 
Disorders Inventory (41). Participants were studied within the 
first 10  days (early follicular phase) of their menstrual cycle 
based on their self-report. At 1:30 p.m. on the day prior to the 
first scan, blood samples were drawn to measure baseline levels 
of estradiol in order to confirm participants were in the follicular 
phase of their menstrual cycle. Samples were not collected for 
three CW and three RAN. Participants also completed Likert-
type scales rating anxiety and hunger ranging from 0 (not at all) 
to 7 (extreme) at 3:00 p.m. the day before a scan visit (baseline), 
and at 6:45 a.m. (awakening), 8:45 a.m. (pre-scan), and 11:00 a.m. 
(post-scan) the day of a scan visit.

experimental Design
Participants completed a resting-state whole-brain pulsed arte-
rial spin labeling (pASL) MR scan on two visits, 24 h apart. For 
the hungry state, participants fasted for 16 h (i.e., starting at 4 
p.m. the previous day, with ad libitum water permitted) prior to 
the scan session. During the fed state, participants consumed 
standardized meals on the day prior to study and a standardized 
breakfast [containing 30% of overall, individualized, total daily 
caloric needs calculated as 30 kcal/kg body weight, and averaging 
approximately 450–500 kcal, with a macronutrient distribution 
of 53% carbohydrates, 32% fat, and 15% protein (15)] 2 h prior 
to the 9 a.m. scan session. Participants were instructed to select 
food items that represented their typical breakfast, and study staff 
ensured the meal met the above macronutrient distribution. For 
the entire study, subjects were housed and provided meals by the 

UCSD Clinical & Translational Research Institute to ensure 100% 
compliance. The visit order was randomized across participants, 
and imaging data were collected on one of two 3-T GE scanners 
in the early follicular phase.

Mri Protocol
Resting brain blood perfusion was measured with pASL using 
a modified flow-sensitive alternating inversion recovery 
sequence with both presaturation pulses and PICORE QUIPSS 
2 post-inversion saturation pulses and a spiral readout with four 
interleaves to reduce signal dropout due to susceptibility effects 
(42). Imaging data were collected on one of two scanners with an 
8-channel head coil: a 3-T GE Signa HDx (GE Medical Systems, 
Milwaukee, WI, USA), or, due to a scanner upgrade, a 3-T GE 
Discovery MR 750 (GE Medical Systems, Milwaukee, WI, USA). 
Imaging parameters of the ASL scan for both systems were: 
22 cm × 22 cm field of view, a 64 × 64 matrix, 3.2 ms echo time, 
2,500 ms repetition time, post-saturation and inversion times of 
TI1 = 600 ms and TI2 = 1,600 ms, tag thickness 10 cm, tag to 
proximal slice gap 1 cm, 20 5 mm axial slices, and 40 volumes 
for 20 tag + control image pairs (43). A scan with the 90° excita-
tion pulse turned off for the first eight repetitions was acquired 
to obtain the equilibrium magnetization of cerebrospinal fluid 
(CSF; a 36-s scan with TR = 4 s, TE = 3.4 ms, NEX = 9). The 
CSF signal was used to estimate the equilibrium magnetization of 
blood, which in turn was used to convert the perfusion signal into 
calibrated CBF units (mL/100  g tissue/min). A 32-s minimum 
contrast scan was acquired using an eight-shot acquisition with 
TR = 2,000 ms, TE = 11 ms, NEX = 2 to estimate the combined 
transmit and receive coil inhomogeneities (44). The two images 
were averaged to create the minimum contrast image. The ASL 
image was then divided by the minimum contrast image to 
remove the effect of coil inhomogeneity during the CBF quantifi-
cation step (45). High-resolution T1-weighted FSPGR anatomical 
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images (Signa HDx: TR = 7.7 ms, TE = 2.98 ms, flip angle = 8°, 
192 × 256 matrix, 172 1 mm sagittal slices; MR 750: TR = 8.1 s, 
TE = 3.17 ms, flip angle = 8°, 256 × 256 matrix, 172 1 mm sagittal 
slices) were obtained for subsequent spatial normalization and 
activation localization. Multisite imaging studies suggest that 
inter-participant variance far outweighs site or magnet variance 
(46–48). However, to control for potential differences due to mag-
net hardware, groups were balanced across magnets (Table  1), 
each participant was scanned on the same scanner model for both 
imaging visits, and scanner was included as a covariate in group 
analyses.

Mri Preprocessing
Image processing was performed with Analysis of Functional 
NeuroImages (AFNI1) (49), FMRIB Software Library2 (FSL, 
Oxford, UK) (50), and locally created MatLab scripts. Each ASL 
dataset was reconstructed using the SENSE algorithm (51, 52) to 
reduce sensitivity to the modulations that occur between shots 
caused by physiological fluctuations or motion. An automated 
MatLab script was used to preprocess the ASL data using AFNI 
and FSL tools. The ASL time series was coregistered to the middle 
time point to minimize the effects of participant motion. For each 
subject, a mean ASL image was formed from the average differ-
ence of the control and tag images using surround subtraction 
to create an uncorrected perfusion time series, and slice timing 
delays were accounted for, making the inversion time (TI2) 
slice specific (53). This mean ASL image was then converted to 
absolute units of CBF (mL/100 g tissue/min) using an estimate of 
the equilibrium magnetization of CSF as a reference signal (54). 
This procedure resulted in a calibrated perfusion value for each 
voxel. Skull stripping of the high-resolution T1-weighted image 
was performed using Brain Surface Extractor (55, 56), shown to 
outperform other methods (57). Scans were manually edited to 
remove residual non-brain material when necessary. Tissue seg-
mentation was performed using FSL’s Automated Segmentation 
Tool (FAST) algorithm to define CSF, gray matter (GM), and 
white matter (WM) regions. The high-resolution T1-weighted 
image and partial volume segmentations were registered to ASL 
space, and partial volume segmentations were downsampled to 
the resolution of the ASL data.

Corrections for Partial Volume Effects
To correct the CBF measures for partial volume effects 
and ensure that CBF values were not influenced by known 
decreased perfusion in WM or increased volume of CSF (58, 
59), we used the method previously reported by Johnson and 
colleagues (60). These calculations assume that CSF has 0 
CBF and that CBF in GM is 2.5 times greater than that in 
WM. The following formula was used to compute partial 
volume corrected CBF signal intensities: CBFcorr = CBFuncorr/
(GM  +  0.4  ×  WM). CBFcorr and CBFuncorr are corrected and 

1 http://afni.nimh.nih.gov.
2 http://fsl.fmrib.ox.ac.uk/fsl/.

uncorrected CBF values, respectively. GM and WM are GM 
and WM partial volume fractions, respectively. Information 
from the high-resolution structural image and the FSL FAST 
was used to determine the tissue content of each perfusion 
voxel. Using AFNI, a 4.0  -mm full-width, half-maximum 
Gaussian filter was applied to the CBFcorr data. Voxels with 
negative intensities were replaced with 0 (61). CBFcorr data 
were registered to the MNI-152 atlas using FMRIB’s Non-
linear Image Registration Tool, part of FSL and resampled 
to a 3 mm × 3 mm × 3 mm resolution grid. Data were then 
screened for data quality, and outlying values deviating by 
more than 3 SDs of the mean were eliminated.

Definition of search regions of interest
Restricting the search space to a small number of a priori ROIs 
is recommended for smaller clinical samples to improve power 
and reduce an inflated false discovery rate (62). Four bilateral 
ROIs associated with homeostatic regulation were selected 
based on prior findings (1, 11, 12) and included the hypo-
thalamus, ventral striatum (VST), vmPFC, and insula (Figure 
S1 in Supplementary Material). The VST was based on known 
functional distinctions (63, 64) and was defined as the nucleus 
accumbens extending into the rostroventral caudate and ventro-
lateral putamen. The vmPFC was based on the Harvard-Oxford 
atlas and was composed of the rostral ACC, known to project to 
the limbic striatum (65) and subcallosal cortex (aka, sgACC). 
We distinguished rostral from caudal ACC by drawing a 45° line 
from the anterior commissure as described by Yucel et al. (66). 
The insula mask from the Harvard-Oxford atlas was used in its 
entirety. The hypothalamus was manually traced based on prior 
methods (67).

Mri statistical analyses
To investigate whether groups differ in the magnitude of 
CBF change when hungry versus fed, a difference measure 
(Hungry  −  Fed) was calculated for each individual. Student’s 
t-tests using AFNI’s 3dttest++ with the −Clustsim option were 
used to examine group differences in the relative change in CBF 
between the hungry and fed conditions within the VST, ACC, 
insula, and hypothalamus ROIs. Each ROI, with the exception of 
the hypothalamus, was treated as a search region. The 3dttest++ 
program performs randomization of the voxel-wise t-tests and 
then feeds these randomized t-statistic maps into 3dClustSim 
directly for cluster-size threshold determination without any 
spatial model for the autocorrelation function (ACF) and is the 
approach recommended by the AFNI group (68) to address the 
problem of inflated false-positive rates in prior software versions 
(69). A peak voxel of p < 0.001 with a cluster threshold of p < 0.05 
was required for significance. At the ROI level, the required mini-
mum cluster size was 27 µL (1 contiguous voxel) for the VST, 81 µL 
(3 contiguous voxels) for the vmPFC, and 81 µL (3 contiguous 
voxels) for the insula. Due to the small size of the hypothalamus, 
whole-ROI Hungry − Fed CBF was calculated for each subject, 
and these values were submitted to a Student’s t-test. A secondary 
exploratory whole-brain voxel-wise group comparison was also 
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conducted. At the whole-brain level, a minimum cluster volume 
of 702  µL (26 contiguous voxels) was required to correct for 
multiple comparisons at p < 0.05 corresponding to a voxel-level 
threshold of p < 0.001.

Exploratory Associations with Clinical Variables
Mean CBF was extracted from significant clusters resulting from 
the between group t-test on the within-subject Hungry  −  Fed 
contrast. Within the RAN and CW groups, exploratory Huber 
robust regressions (70), Bonferroni corrected to control for 
family-wise error, were conducted in R to examine the relation-
ship of pre-scan hunger ratings and CBF during the Hungry and 
Satiated visits within each ROI. Secondary analysis examined the 
relationship of CBF with other clinical variables [harm avoidance, 
state anxiety, trait anxiety, depression, age, current body mass 
index (BMI), and for RAN only, lowest post-pubertal BMI].

resUlTs

Demographics and Baseline clinical 
assessments
Participants did not differ in terms of age or BMI (Table 1). Using 
standardized assessment instruments (5, 35), RAN had elevated 
levels of depression (though not clinically significant), trait anxi-
ety, and harm avoidance relative to CW on admission to the study.

self-report assessments when hungry or 
satiated
At the time of scan, RAN reported greater current anxiety on a 
7-point Likert-type scale when hungry or satiated relative to CW 
(Figure 1A). All participants reported greater hunger during the 
Hungry condition relative to the Satiated condition (Figure 1B).

rOi analysis
Because statistical tests of group differences in Hungry − Fed CBF 
evaluated a priori hypotheses, we report all results and indicate 
whether or not the significant clusters survived adjustment to 
p-values for the small number of statistical tests performed (71, 
72). Effect sizes are provided in addition to p-values (magnitude 
of d: small 0.2, medium 0.5, and large 0.8) (73). Within our ROI 
search regions, significant group differences in the Hungry − Fed 
CBF contrast measure were found in the right VST and right 
subgenual ACC (pcorr  <  0.05), and in the left posterior insula 
(punc  <  0.05) (Figure  2; Table  2). CW had greater CBF when 
hungry versus fed, whereas RAN had reduced response when 
hungry versus fed. No group differences were detected in the 
hypothalamus.

Voxel-Wise analysis
Exploratory whole-brain voxel-wise analysis (voxel-wise 
threshold p < 0.001, cluster size >702 μL corrected for multiple 
comparisons at p  <  0.05) did not detect any significant group 
differences in the Hungry − Fed CBF contrast.

relation to Other clinical Variables
Huber robust regression analysis revealed that greater pre-scan 
hunger ratings were associated with decreased CBF in the 
left insula (t  =  −2.67, p  =  0.008) only in RAN when hungry, 
Bonferonni corrected for 2 conditions  ×  3 regions of interest 
(Figure 3; Table S2 in Supplementary Material). The interaction 
of the regression slopes for hunger ratings and insula CBF when 
hungry with group trended toward significance [F(2,36) = 3.2, 
p  =  0.054], raising the possibility that this difference between 
RAN and healthy controls was driven by the hungry RAN 
women, which might reflect a disconnect between the hunger 
sensation and brain response in AN. None of the secondary 
analyses between CBF and other clinical variables reached sig-
nificance after controlling for multiple comparisons (Table S2 in 
Supplementary Material).

DiscUssiOn

This represents the first study to show that women remitted from 
AN have aberrant CBF at rest in homeostatic and hedonic food 
motivation pathways in response to hunger. Using pulsed ASL, 
we reproduced previous PET findings (12) in a larger sample 
of healthy women and found that hunger was associated with 
increased CBF in regions involved in appetite regulation, includ-
ing the right VST, subgenual ACC, and left posterior insula. In 
contrast, RAN showed reduced CBF when hungry relative to 
when satiated in these same regions. These regions have been 
implicated consistently in studies of AN (3–10). Interestingly, 
there was a suggestion that for the RAN group, diminished 
CBF in the left posterior insula when hungry was associated 
with increased ratings of hunger. Why hunger in RAN may be 
associated with reduced CBF in regions responsible for valuating 
rewarding and motivated behavior is not well understood, but 
this aberrant response may shed light on why RAN lack the ability 
to appropriately evaluate food reward or to eat when hungry.

Findings in RAN of a decreased Hungry − Fed CBF response 
in the posterior insula (uncorrected), VST, and subgenual ACC, 
and associations between diminished CBF in the posterior insula 
when hungry and increased hunger ratings further support the 
potential role of the insula in integrating homeostatic informa-
tion (e.g., hunger) and reward value with feeding behavior (75). 
The dorsal posterior insula is the primary interoceptive repre-
sentation of the body’s homeostatic sensations, including hunger 
(13). This information is re-represented in the anterior insula, 
where interoceptive information is integrated with motivational 
and emotional processes, supporting feeling states, and giving 
rise to conscious visceral perception of homeostatic states (76, 
77). Clinically, patients with AN report poor interoceptive aware-
ness (78) and demonstrate interoceptive prediction errors during 
meal anticipation (10). Disturbed interoceptive awareness of 
hunger could play a role in assessing body states and responding 
to hunger cues. Findings of altered CBF in the posterior insula 
support the notion that AN might suffer from a fundamentally 
and physiologically altered sense of physical state, and that brain 
circuits may misperceive signals regarding hunger (78). This is 
consistent with several fMRI studies reporting altered insula 
function in RAN (9, 79, 80).
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FigUre 1 | Line graphs depicting self-report Likert-type visual analog scale values. (a) Line graph of pre- and post-scan self-report measures of current anxiety 
show a main effect of Group [F(1,35) = 8.1, p = 0.007], with RAN reporting greater anxiety relative to CW [z = 2.56, p = 0.010] and interval [F(1,100) = 6.6, 
p = 0.011], although post hocs were not statistically significant. No main effect of Visit or any interactions of Group, Visit, and Interval were found. (B) Line graphs of 
pre- and post-scan self-report measures of hunger show a main effect of Visit [F(1,35) = 138.1, p = < 0.001], with participants reporting greater hunger in the 
Hungry condition relative to the Satiated condition [z = 6.04, p < 0.001], and a main effect of Interval [F(1,101) = 12.8, p < 0.001], although post hocs were not 
statistically significant. No main effect of Group or any interactions of Group, Visit, and Interval were found. CW, healthy comparison women; RAN, women remitted 
from anorexia nervosa.
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Between group CBF differences in the striatum, with reduced 
Hungry − Fed CBF for RAN, support the notion that alterations 
in metabolic function when hungry may contribute to food 
avoidance and/or impaired reward learning in AN (20). Many 
individuals with AN respond in a fearful or avoidant manner 
to salient rewards, such as highly palatable food, rather than 
experiencing pleasure, and computational modeling studies show 
increased learning from punishment as opposed to reward in 
RAN (81). We have previously proposed that individuals with AN 
may have an intrinsic sensitivity to coding salient stimuli, such as 
food, as aversive or risky, rather than rewarding, that overrides 
the influences of hunger (82). Abnormalities of structure and 
function within the extended “visceromotor” network (involving 
vmPFC and anatomically related limbic, striatal, thalamic, and 
basal forebrain structures) impair this network’s roles in cognitive 
processes such as reward learning and may dysregulate visceral, 
behavioral, and cognitive responses to emotional stimuli and 
stress (20). Prior fMRI studies of reward processing in RAN show 
underactive reward valuation circuitry (e.g., VST) to immediate 
salient stimuli when hungry (3, 5, 82). Our results of CBF dif-
ferences at rest suggest that food restriction in AN may be due 
to difficulty in appropriately binding, scaling, or discriminating 
emotionality and reward in response to salient stimuli due to 
homeostatic dysfunction. Our data, and those of others (83) sug-
gest that AN can sense their hunger state when actively ill and 

recovered, and they can accurately assess palatability of foods and 
sweet taste (79, 84). Consistent with prior findings of an aber-
rant relationship between ghrelin signaling and neural reward 
response in AN, our data raise the intriguing hypothesis that AN 
may have difficulty translating homeostatic signals associated 
with energy balance into motivated eating behavior, and this may 
not normalize in recovery. In other words, while RAN appear 
to experience hunger accurately, it is possible that hunger is less 
effective at stimulating brain mechanisms supporting the adap-
tive drive to eat. This suggests that individuals who recover may 
rely on other strategies to motivate eating (e.g., cognitive control 
or external guides).

What is the meaning of altered CBF in this study? Because 
vascular supply is varied locally in the brain in correspondence 
with local variations of functional activity, CBF is generally 
thought to be a surrogate marker of energy delivery and use that 
is coupled with neuronal activity and metabolism. ASL measures 
CBF in the capillary bed, and thus changes in CBF may also reflect 
the function of astrocytes, given their critical role in mediating 
the coupling of neuronal activity with metabolic and vascular 
responses (85). Astrocytic end feet wrap around the endothelium 
of capillaries and via this contact, they can influence CBF and 
control the transport of nutrients, such as glucose, in and out of 
the brain to ensure proper brain homeostasis and support neu-
rons metabolically (85, 86). Recent evidence suggests astrocytes, 
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TaBle 2 | T-test results within regions of interest demonstrating a group difference in the Hungry − Fed contrast for cerebral blood flow (CBF).

rOi subregion r/l Volume (μl) rl aP is Peak t p cohen’s da

Ventral striatum R 108 −12 −21 −6 3.86 <0.001 0.55
Ventromedial prefrontal  
cortex

Subgenual anterior cingulate  
cortex (ACC), adjacent to the  
caudate head

R 108 −3 −9 −3 3.70 <0.001 0.22

Insulab Posterior insula L 54 30 24 6 3.98 <0.001 0.14

Small volume correction was determined with Monte–Carlo simulations (via AFNI’s 3dClustSim) to guard against false positives. Coordinates are reported as the center of mass and 
are presented in RAI format.
aCohen’s d values are presented for the group difference in CBF in the Hungry − Fed contrast averaged across each anatomical ROI to avoid the possibility of over-inflation by 
restricting analysis to significant (“non-independent”) clusters (74).
bInsula cluster did not meet cluster-size threshold of 81 µL to control for multiple comparisons.
RL, right-left direction; AP, anterior–posterior direction; IS, inferior–superior direction; L, left; R, right; CW, healthy comparison women; RAN, women remitted from anorexia nervosa.

FigUre 2 | Altered CBF response to hunger in RAN. Student’s t-test results revealed between group differences in the Hungry − Fed contrast within regions of 
interest (voxel-wise threshold p < 0.001, cluster size corrected for multiple comparisons at p < 0.05). Error bars represent the SE for each group; *p < 0.05. 
Statistical maps are overlaid onto the MNI152 Harvard-Oxford Atlas 3 mm standard brain. CW, healthy comparison women; RAN, women remitted from anorexia 
nervosa; VST, ventral striatum; ACC, anterior cingulate cortex; CBF, cerebral blood flow; R, right.
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similar to neurons, respond directly to multiple nutrient and 
endocrine signals and, in turn, contribute to adjusting central 
nervous system control of systemic metabolism according to 
nutrient availability (87). This raises the question of whether our 
findings reflect an aberrant neural-astrocyte response to peptides, 
enzymes, or metabolic hormones that disrupt energy balance 
or hunger signaling in AN. Although we were unable to collect 
plasma glucose, insulin, or hormones (e.g., leptin, ghrelin) on a 
sufficient number of participants, there is evidence in women 
with AN of altered fMRI activation of neural circuits involved 

in food motivation that is associated with abnormal levels of 
appetite-regulating hormones (88).

Decreased CBF at rest in RAN when hungry compared to 
when satiated may contribute to the decreased fMRI blood 
oxygenation level dependent (BOLD) response to food and 
money rewards associated with hunger in AN (3, 5). Generally 
interpreted as an indirect qualitative measure of neuronal activity, 
the fMRI BOLD signal reflects local changes in deoxyhemoglobin 
content, which in turn exhibits a complex dependence on 
changes in CBF, cerebral blood volume, and cerebral metabolic 
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FigUre 3 | Plot demonstrating results of robust regression depicting the association between pre-scan hunger ratings and cerebral blood flow when hungry within 
the left posterior insula in women remitted from anorexia nervosa (p < 0.05, Bonferroni corrected for multiple comparisons).
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rate of oxygen consumption (22). Of these quantities, CMRO2 
is thought to be most tightly linked to neural activity, reflecting 
the notion that neurons necessarily expend energy to accomplish 
their work (89). The positive BOLD response observed in most 
fMRI experiments reflects the fact that CBF increases relatively 
more than CMRO2, so that local capillary and venous blood are 
more oxygenated during increased brain activity. In general, the 
actual amplitude of the BOLD response reflects a delicate balance 
between the relative increases in CBF and CMRO2 (21). Thus, 
decreased BOLD response to hunger in AN may reflect impaired 
CBF response and/or altered CBF/CMRO2 coupling or a decrease 
in neural activity with normal CBF/CMRO2 coupling. However, 
without a quantitative estimate of functional changes in CMRO2, 
which can be obtained by simultaneously acquiring functional 
BOLD and CBF data during a cognitive task and a hypercapnic 
challenge (a.k.a., calibrated fMRI) (90), the impact of CBF on 
BOLD response in AN is not well understood.

This study has several strengths, including quantification of 
CBF, rigorous control of hunger and satiety, and studying well-
characterized remitted subjects to avoid potential confounds of 
malnutrition. While 15O-labeled water PET is the gold standard 
for CBF measurement, ASL fMRI has been shown to be as reli-
able a technique (91, 92) with equivalent accuracy and precision 
and has many advantages over this invasive method that may 
make it preferable in clinical research. CBF measured with ASL 
refers to the rate of delivery of arterial blood to the capillary bed 
in brain tissue and is typically quantified in milliliters of blood 
per 100 g of tissue per minute (22). ASL is a non-invasive and 
reliable fMRI technique (58) that magnetically labels arterial 
water in the brain and uses it as an endogenous tracer to meas-
ure CBF. Because ASL fMRI provides a quantitative measure of 
CBF in the capillary bed, rather than a relative measure such 
as the venous BOLD fMRI signal, it has the potential to more 

accurately estimate the magnitude and location of neural func-
tion (21) and is less susceptible to artifactual image degradation 
from surrounding bony sinuses and poor spatial resolution that 
limits other methods (93).

Despite these strengths, limitations are important to acknowl-
edge. ASL fMRI does not provide a direct measure of neuronal 
activity, and limitations in many of the existing pulse sequences 
(e.g., sensitivity to transit time effects, limited brain coverage, and 
low spatial resolution) may account for some of the discrepancies 
across studies. To limit multiple comparisons, we restricted our 
primary analyses a priori ROIs; it is important to recognize these 
regions are part of larger valuation and salience circuits involving 
complex cortical–striatal processes. In contrast to prior findings 
(15, 16), we did not find any regions of increased CBF for satiety in 
the control women. Methodological differences between studies 
could account for discrepant findings. For example, we fed par-
ticipants 30% of their individualized daily caloric needs whereas 
others (12) have fed 50% of daily resting energy expenditure, and 
our participants fasted for 16 versus 36  h in other studies (15, 
16). However, our methods may be more ecologically valid, as 
others (12) induced rather extreme states of hunger and satiation. 
Because difference contrasts can be difficult to interpret, we also 
conducted a 2 group  ×  2 condition linear mixed-effect model 
in R. Although we replicated our t-test results at a voxel-level 
p < 0.01 and cluster-corrected p < 0.05, results did not survive 
at the recommended per-voxel p-threshold of 0.001 using AFNI’s 
new ACF modeling approach, suggesting the study may not be 
sufficiently powered at the group level for this stringent correction. 
Follow-up studies with larger cohorts are certainly needed. Finally, 
without premorbid data we cannot determine whether low CBF in 
response to hunger is a vulnerability factor/biomarker for weight 
loss or whether it reflects a scar of malnutrition. This is the first 
study to examine the effects of hunger and satiety on CBF in RAN.
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clinical implications
Obesity has long been known to result from dysfunction of key bio-
chemical, neural, and behavioral components of the homeostatic 
control system (94), emphasizing the physiological importance of 
this system in eating behavior and weight. Our data, and others, 
are beginning to reveal that dysfunction of the homeostatic control 
system may also contribute to AN. These findings offer new targets 
for psychological interventions. For example, developing strategies 
that incorporate an understanding of altered homeostatic sensitiv-
ity into behavioral management may improve treatment compli-
ance and outcome by enhancing insight and reducing reliance on 
physiological signals to guide eating behavior.

cOnclUsiOn

The capacity to adjust food intake in response to changing 
energy requirements is essential for survival. Eating behavior 
is modulated by metabolic and ingestive factors in the service 
of homeostasis, and current results suggest possible metabolic 
dysfunction associated with homeostatic regulation may explain 
disordered eating in AN.
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